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There is great interest in methods for computing that do not involve digital machines. Many com-
putational paradigms were inspired by brain research, such as Boolean neuronal logic [McCul-
loch & Pitts, 1943], the perceptron [Rosenblatt, 1958], attractor neural networks [Hopfield, 1982]
and cellular neural nets [Chua & Yang, 1988]. All these paradigms abstract biological circuits to
artificial neural networks, i.e. interconnected units (neurons) that perform computations based
on the connections between the units (synapses). Here we present a novel computational frame-
work based on polychronous wavefront dynamics. It is entirely different from an artificial neural
network paradigm, rather it is based on temporal and spatial patterns of activity in pulse-
propagating media and their interaction with transponders, which create pulses in response to
receiving appropriate inputs, e.g. two coincident input pulses. A pulse propagates as a circu-
lar wave from its source to other transponders. Computations result from interactions between
transponders, and they are encoded by the exact physical locations of transponders and by
precise timings of pulses. We illustrate temporal pattern recognition, reverberating memory,
temporal signal analysis and basic logical operations using polychronous wavefront computa-
tions. This work reveals novel principles for designing nanoscale computational devices.
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1. Introduction

Polychronous wavefront computation is motivated
by neuroscience: Synchrony of neuron firing is
important in the brain, since two or more spikes
arriving together elicit a stronger response in a post-
synaptic neuron than if they arrive separately. Usu-
ally no account is made by researchers that there
are axonal conduction delays, or if so, the delays are
all assumed to be equal, so that synchronous firing

results in synchronous arrival of spikes at postsy-
naptic targets. However, nerve impulses propagate
along axons with finite velocity, and the axonal con-
duction delays depend on the distance between neu-
rons, which can vary from neuron to neuron, often
reaching tens of milliseconds [Swadlow, 1985, 1994].
Therefore, to ensure synchronous arrival, neurons
must fire spikes at different moments of time with
the temporal patterns being determined by con-
duction delays to the target. This phenomenon is
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referred to as polychronization [Izhikevich, 2006],
from Greek poly for many and cronos for time or
clock. This phenomenon is illustrated in Fig. 1(a)
where neurons a and b have different conduction
delays (20 and 5 ms, respectively) to the target neu-
ron c, reflecting different distances to c. If a and b
fire together, the spikes they generate will arrive
at c at different moments of time, see Fig. 1(b). A
stronger input to c occurs if b fires 15 ms after a. A
different temporal pattern might affect neuron d (if
a fires 15 ms after b), etc.
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Fig. 1. (a) Neurons a and b project to neuron c with axonal
conduction delays of 20 ms and 5 ms, respectively. (b) If neu-
rons a and b fire synchronously, their spikes arrive at neuron
c at different times. If neuron a fires first and then neuron b
fires 15 ms later, their spikes arrive at neuron c synchronously,
evoking a stronger response in the neuron. (c) Transponders
can generate waves of excitation that propagate through the
medium. The transponders are located at such positions that
a wave generated at transponder a (at t = 0), and one at
transponder b (at t = 15) collide (at t = 20) at the loca-
tion of transponder c, thereby exciting a response wave from
it. The transponder d is unaffected. The dashed curve is
the parabola traced by the intersections of waves emanat-
ing from a and from b with the inter-pulse interval of t = 15;
any transponder on the parabola will fire in response to the
pulses.

The effect of coincidental input spikes to a bio-
logical neuron depends on many factors, such as
the strength of synaptic conductances, the loca-
tion of synapses on the dendritic tree, postsynaptic
voltage-gated currents, neuromodulation and the
history of neuronal activity. Taking into account all
these factors is important for building detailed mod-
els of the brain [Izhikevich & Edelman, 2008]. How-
ever, our interest here is in more general kinds of
transponders than neurons and more general kinds
of media than networks of axons.

1.1. Polychronous wavefront
computations

Our abstraction of these observations begins with a
medium that can support the propagation of activ-
ity and in which there are (i) transponders whose
sensitivities are tuned to fire a pulse in response to
coincident arrival of two or more pulses, and (ii) the
pulses they generate propagate outward from the
source as circular waves through the medium.

The waves could pass through each other like
deformation waves in an elastic medium or ripples
on the surface of water (reaction–diffusion waves
would annihilate each other upon collision and
hence could not be used here).

One can visualize two ripples in still water
where two pebbles have been tossed. The intersec-
tions of the ripples trace a parabola. A buoy located
so as to lie on this parabola of intersection will expe-
rience a ripple of double amplitude compared to
that were it not on the parabola. In response to
a double ripple perturbation, the buoy can gener-
ate its own ripple, which can go on to interact with
other transponders.

The wave-propagating medium corresponds to
an axonal web in the brain with the exception
that it is homogeneous and isotropic, i.e. waves can
propagate in all directions, passing through each
other, and affecting all transponders in the same
way (no artificial synaptic weights). Since the prop-
agation speed is finite, there result propagation
time delays proportional to the distance between
transponders. To fire or not to fire depends exclu-
sively on the position of transponders and on the
timing of input waves. This framework is simple
enough to be implemented in physical media, yet
it can perform nontrivial computations, as we show
in this article.

We illustrate the main idea of polychronous
wavefront computation in Fig. 1(c) using snapshots
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of two pulses from transponders a and b generated
at times t = 0 and t = 15, respectively, and meet-
ing at transponder c at t = 20. The pulse generated
by a passes through d without any effect because d
needs two pulses to fire. Similarly, the pulse from
the transponder b passes through other transpon-
ders and through the pulse from a. The two pulses
arrive coincidentally at the transponder c and evoke
a pulse response there after a short latency period,
which we use in our simulations as the unit of time.
Obviously, the pulses from a and b fired at other
times might excite other transponders.

Since the effect of initial pulses depends exclu-
sively on their timing and on the relative positions
of transponders in the system, we can program
transponders by their placement to build cir-
cuits that can compute. Following are some exam-
ples that illustrate such polychronous wavefront
computations.

2. Temporal Signal Processing

Polychronous wavefront computation can perform
temporal signal analysis: Consider two transpon-
ders, a and b, that can be excited by external sig-
nals, e.g. from sensors or other transponders. Our

goal here is to detect the instances when b is excited
τ units of time after a, as in Fig. 2(a). If the two
inputs correspond to auditory signals from two ears,
then this architecture implements the Jeffress model
of delay lines for binaural sound source localiza-
tion in the azimuthal plane [Jeffress, 1948]. If pulses
of a and b are triggered by the same signal, then
the architecture can detect various inter-pulse inter-
vals, and hence analyze the frequency content of the
signal.

Pulses from a and b [Fig. 2(b)] trace a unique
parabola depending on the inter-pulse interval. A
few such parabolas are depicted in Fig. 2(c). To
detect the interval τ , we put our “output” or “detec-
tor” transponder anywhere on the appropriate
parabola. Since different inter-pulse intervals corre-
spond to different parabolas in Fig. 2(c), other inter-
pulse intervals can be detected by placing other
transponders onto the corresponding parabolas.
Each such transponder initiates its own wave, which
could be used as the input to further transponders
to detect complex inter-pulse patterns, e.g. triplets
of pulses. This describes how polychronous wave-
front computations can be programmed, and it lays
a basis for performing Fourier computations, which
we develop elsewhere.
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Fig. 2. (a) Detection of the inter-pulse interval τ in the input streams generated by transponders a and b. The interval
elicits waves (shown in b) whose intersection traces a corresponding parabola in (c). The transponder labeled τ fires when the
inter-pulse interval is τ .
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Fig. 3. Reverberating memory units. Four (a) or three (b) equidistant transponders result in reverberating activity if triggered
at the same time. (c) A reverberating doublet (two pulses) can encode and maintain any given real number as its inter-pulse
interval. In these cases, the intersection parabolas are straight dashed lines.

3. Reverberating Memory

Figure 3 depicts several configurations that can
maintain stable reverberating activity, and hence
serve as memory units. Consider transponders a
and b in Fig. 3(a) firing at the same time. They
emit waves whose intersections pass through c and
d at the same time, thereby exciting these transpon-
ders and eliciting a new pair of waves, which return
to a and b at the same time; the loop is closed
and the activity is periodic. Interestingly, one can
implement reverberating memory using only three
transponders, as in Fig. 3(b).

One may think that the capacity of such a mem-
ory unit is only 1 bit, since at any given moment
it either has a reverberating activity or it does not.
However, the state of the unit is time-dependent, so
we can encode information in the phase (i.e. timing)
of excitation relative to some external timing sig-
nal. In this implementation, one could encode any
real number into the phase of reverberating activity,
theoretically making the memory capacity infinite.
(In practice, it is bounded by the precision of the
physical implementation of the system.) Figure 3(c)
illustrates how periodic sequences of real numbers
can be encoded into the reverberating memory unit:
In this case, each transponder emits a doublet (two
waves) with an inter-pulse interval corresponding to
the “memorized” analog real number. The doublets
reverberate, thereby maintaining the number.

4. Logical Functions

Let us show that polychronous computations
can be used to implement any general-purpose

computations, e.g. via Boolean functions. For this,
it suffices to show that we can implement Boolean
NOT and OR (any other function is a superposition
of these two; see [Whitehead & Russell, 1927]).

4.1. TRUE and FALSE states

Before we proceed further, we need to define what
states of excitable elements correspond to TRUE or
FALSE signals. For example, a pulse may denote
a TRUE signal and no pulse a FALSE signal, as
in Fig. 4(a). This is not practical though, since a
silent excitable element could be interpreted as con-
stantly transmitting FALSE signals. Alternatively, a
TRUE signal may correspond to two pulses, whereas
a FALSE signal corresponds to one pulse [Fig. 4(b)].
Or, alternative to that, the inter-pulse interval may
encode the truth value, as in Fig. 4(c). Finally, the
timing of a pulse relative to some global signal may
encode TRUE or FALSE values, as in Fig. 4(d).
In this section, we use implementation in Fig. 4(e):
The medium has two pacemaker excitable elements
that trigger two waves periodically, called TRUE and
FALSE waves, respectively. Any other element that
is excited by the TRUE wave (and some other input)
is said to emit TRUE signal, and any element excited
by the FALSE wave (and some other input) is said to
emit a FALSE signal. Because the waves pass via dif-
ferent elements at different times, the resultingpulses
are not synchronous, but polychronous.

4.1.1. Boolean NOT

Figure 5 depicts an implementation of the Boolean
function NOT. It has two pacemaker (reference)
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Fig. 4. Five different implementations of TRUE and FALSE
states of an excitable element as described in the text.

excitable elements, the one on the bottom sends
TRUE (green) reference waves and the one on the
left sends FALSE (red) reference waves. All com-
putations in the system are performed relative to
those waves.

Suppose the input element in the middle is
excited with the TRUE reference wave, as in
Fig. 5(a). The output excitable element could be
placed anywhere on the intersection of this wave
and the FALSE reference wave, e.g. as in Fig. 5(b),
so that it generates FALSE signal (i.e. it fires

T

F

T

F

T

F

F

T

TRUE  =>  FALSE

FALSE  =>  TRUE

Fig. 5. Implementation of the Boolean function NOT. TRUE waves are depicted in green and FALSE waves are in red. The
color is used only for the convenience of the reader, but it does not affect in any way the property of each wave. The black
dots indicate carefully placed excitable elements as described in the text.

in response to the FALSE reference wave pass-
ing through it). Conversely, if the input is set to
be excited by the FALSE reference wave, as in
Fig. 5(d), the output excitable element may be
anywhere on the intersection of this wave and the
TRUE reference wave, e.g. as in Fig. 5(d), so that it
generates a TRUE signal — it fires when the TRUE
wave passes through it. That is, the excitable ele-
ment must be on the intersection of the red dashed
parabola in Fig. 5(c) and green dashed parabola in
Fig. 5(f).

4.2. Boolean OR

Figure 6 depicts an implementation of the Boolean
function OR. There are two input excitable ele-
ments marked by a and b in Fig. 6(a). Suppose they
are activated with the TRUE references wave. There
are three parabolas that interest us here: two that
correspond to the intersection of the input waves
with the next TRUE reference wave, marked by
green dashed curves in Fig. 6(c) and the one that
corresponds to the intersection of the input waves,
marked by the black dashed curve in Fig. 6(c).
The three parabolas intersect at a common point,
marked by T in Fig. 6(c). We place our output
excitable element at this point. The excitable ele-
ment is activated by any two of the waves that con-
verge here, so it would generate a TRUE signal if
excitable element a is TRUE regardless of the value
of b, excitable element b is TRUE regardless of the
value of a, or both a and b are TRUE.
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Fig. 6. Implementation of the Boolean function OR. The black dots indicate carefully placed excitable elements as described
in the text.

However, the output excitable element would
be quiet if both a and b fire with the FALSE
reference wave (as in Figs. 6(e)–6(h)). This is
exactly what we need, because we want the out-
put excitable element to fire with the FALSE ref-
erence wave in this case. For this, we put an
auxiliary excitable element x on the parabola in
Fig. 6(g) at such a location that the wave gener-
ated by x reaches the output excitable element at
the same time as the FALSE reference wave passes
through it.

The bottom half of Fig. 6 shows computations
of the Boolean function OR when only one argu-
ment is TRUE. Apparently, the configuration is
designed in such a way that one TRUE signal is
enough to trigger the TRUE response regardless of
the value of the other argument.

5. Discussion

We present here a theoretical paradigm for per-
forming computations based on the difference of
timing of pulses in a medium that supports iso-
lated propagating waves, making possible poly-
chronous wavefront computations. This mechanism
was motivated by our studies of polychronization
phenomena in spiking neural networks in the brain
[Izhikevich, 2006]. This theory can be implemented
in other physical systems having nothing to do
with neuroscience; for example, arrays of Landau–
Lifshitz–Gilbert models of nanosized spin torque
oscillators [Slavin, 2006], cellular wave computers
[Roska, 2005], MEMS oscillators, or phase-locked
loops [Hoppensteadt & Lin, 2006], can be con-
structed that will produce comparable results of
varying resolution to the theory described here.
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Interestingly, chemical waves in reaction–diffusion
systems would not work in this case, because exci-
tation waves there collide and annihilate each other.

Any physical implementation, of course, would
have certain limitations. For example, propagat-
ing waves and transponders would have a nonzero
width; the speed of wave propagation may depend
on its curvature (radius); propagating waves pass-
ing through each other may distort their phases;
the waves may have decaying amplitudes; and to
excite a transponder, two waves may need to have
a certain (nonzero) angle of intersection. These last
two features might actually be desirable in building
large-scale circuits, since this would limit the scope
of any computation to a local area.

The important difference between the poly-
chronous wavefront architecture described here and
other brain-inspired systems is that it is not an
artificial neural network. Instead it is based on
polychronous activity; it does not have synapses
or any other specific connections that determine
how one transponder affects another transponder.
Here, the effect of each pulse depends exclusively
on its timing relative to the other pulses and the
locations of transponders, thereby emphasizing the
polychronous nature of information processing.

Programming such a “polychronous wavefront
computer” by placing transponders at certain
locations is still an art rather than a science,
although a graphical user interface is provided on
http://www.izhikevich.com.

There are many open questions: How to use
multilayer structures to extend the architecture in
Fig. 2 to perform recognition of complex temporal
patterns? Could activity-dependent adjustment of
positions of transponders serve as a “learning rule”?
How to use the memory units in Fig. 3 to imple-
ment simple arithmetic, such as addition of stored
analog real numbers? Since the number of waves
can grow exponentially, can this paradigm be used
to solve notoriously hard, e.g. NP, problems? Are
there any advantages in requiring that n > 2 coin-
cident pulses are needed to excite a transponder?
How can this paradigm be usefully extended into
multidimensional spaces?
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